1,454 research outputs found

    On Upper Limits for Gravitational Radiation

    Full text link
    A procedure with a Bayesan approach for calculating upper limits to gravitational wave bursts from coincidence experiments with multiple detectors is described.Comment: 10 pages, 2 figures, latex files using cernlik.cls (included). This paper and related work are also available at http://grwav3.roma1.infn.it/pia/papersweb.html Version number 2: text unchanged. Modified two references, adding the hep number

    On the crosscorrelation between Gravitational Wave Detectors for detecting association with Gamma Ray Bursts

    Get PDF
    Crosscorrelation of the outputs of two Gravitational Wave (GW) detectors has recently been proposed [1] as a method for detecting statistical association between GWs and Gamma Ray Bursts (GRBs). Unfortunately, the method can be effectively used only in the case of stationary noise. In this work a different crosscorrelation algorithm is presented, which may effectively be applied also in non-stationary conditions for the cumulative analysis of a large number of GRBs. The value of the crosscorrelation at zero delay, which is the only one expected to be correlated to any astrophysical signal, is compared with the distribution of crosscorrelation of the same data for all non-zero delays within the integration time interval. This background distribution is gaussian, so the statistical significance of an experimentally observed excess would be well-defined. Computer simulations using real noise data of the cryogenic GW detectors Explorer and Nautilus with superimposed delta-like signals were performed, to test the effectiveness of the method, and theoretical estimates of its sensitivity compared to the results of the simulation. The effectiveness of the proposed algorithm is compared to that of other cumulative techniques, finding that the algorithm is particularly effective in the case of non-gaussian noise and of a large (100-1000s) and unpredictable delay between GWs and GRBs.Comment: 7 pages, 4 figures, 1 table. Submitted by Phys. Rev.

    Background Estimation in a Gravitational Wave Experiment

    Get PDF
    The problem to estimate the background due to accidental coincidences in the search for coincidences in gravitational wave experiments is discussed. The use of delayed coincidences obtained by orderly shifting the event times of one of the two detectors is shown to be the most correctComment: Latex file. 6 pages, 3 figures. Submitted to the proceeding of the 3 GWDAW workshop (Rome, dic 1999) (International journal of Modern physics D

    Inferring the intensity of Poisson processes at the limit of the detector sensitivity (with a case study on gravitational wave burst search)

    Get PDF
    We consider the issue of reporting the result of search experiment in the most unbiased and efficient way, i.e. in a way which allows an easy interpretation and combination of results and which do not depend on whether the experimenters believe or not to having found the searched-for effect. Since this work uses the language of Bayesian theory, to which most physicists are not used, we find that it could be useful to practitioners to have in a single paper a simple presentation of Bayesian inference, together with an example of application of it in search of rare processes.Comment: 36 pages, 11 figures, Latex files using cernart.cls (included). This paper and related work are also available at http://www-zeus.roma1.infn.it/~agostini/prob+stat.htm

    Upper Limits in the Case That Zero Events are Observed: An Intuitive Solution to the Background Dependence Puzzle

    Get PDF
    We compare the ``unified approach'' for the estimation of upper limits with an approach based on the Bayes theory, in the special case that no events are observed. The ``unified approach'' predicts, in this case, an upper limit that decreases with the increase in the expected level of background. This seems absurd. On the other hand, the Bayesian approach leads to a result which is background independent. An explanation of the Bayesian result is presented, together with suggested reasons for the paradoxical result of the ``unified approach''.Comment: Latex file (compiled with cernrep.cls included) 5 pages, no figures. To appear in the Proceed. of the workshop on ''Confidence limits'' (CERN, Jan 2000). This paper and related papers also available at http://grwav3.roma1.infn.it

    Bayesian model comparison applied to the Explorer-Nautilus 2001 coincidence data

    Full text link
    Bayesian reasoning is applied to the data by the ROG Collaboration, in which gravitational wave (g.w.) signals are searched for in a coincidence experiment between Explorer and Nautilus. The use of Bayesian reasoning allows, under well defined hypotheses, even tiny pieces of evidence in favor of each model to be extracted from the data. The combination of the data of several experiments can therefore be performed in an optimal and efficient way. Some models for Galactic sources are considered and, within each model, the experimental result is summarized with the likelihood rescaled to the insensitivity limit value (``R{\cal R} function''). The model comparison result is given in in terms of Bayes factors, which quantify how the ratio of beliefs about two alternative models are modified by the experimental observationComment: 16 pages, 4 figures. Presented at the GWDAW2002 conference, held in Kyoto on Dec.,2002. This version includes comments by the referees of CQG, which has accepted the paper for pubblication in the special issue of the conference. In particular, note that in Eq. 12 there was a typeset error. As suggested by one of the referees, a uniform prior in Log(alpha) has also been considere

    Validating delta-filters for resonant bar detectors of improved bandwidth foreseeing the future coincidence with interferometers

    Full text link
    The classical delta filters used in the current resonant bar experiments for detecting GW bursts are viable when the bandwidth of resonant bars is few Hz. In that case, the incoming GW burst is likely to be viewed as an impulsive signal in a very narrow frequency window. After making improvements in the read-out with new transducers and high sensitivity dc-SQUID, the Explorer-Nautilus have improved the bandwidth (∌20\sim 20 Hz) at the sensitivity level of 10−20/Hz10^{-20}/\sqrt{Hz}. Thus, it is necessary to reassess this assumption of delta-like signals while building filters in the resonant bars as the filtered output crucially depends on the shape of the waveform. This is presented with an example of GW signals -- stellar quasi-normal modes, by estimating the loss in SNR and the error in the timing, when the GW signal is filtered with the delta filter as compared to the optimal filter.Comment: 7 pages, presented in Amaldi6, accepted for publication in Journal of Physics: Conference Serie

    Search for Periodic Gravitational Wave Sources with the Explorer Detector

    Get PDF
    We have developped a procedure for the search of periodic signals in the data of gravitational wave detectors. We report here the analysis of one year of data from the resonant detector Explorer, searching for pulsars located in the Galactic Center (GC). No signals with amplitude greater than hˉ=2.9 10−24\bar{h}= 2.9~10^{-24}, in the range 921.32-921.38 Hz, were observed using data collected over a time period of 95.7 days, for a source located at α=17.70±0.01\alpha=17.70 \pm 0.01 hours and ÎŽ=−29.00±0.05\delta=-29.00 \pm 0.05 degrees. Our procedure can be extended for any assumed position in the sky and for a more general all-sky search, even with a frequency correction at the source due to the spin-down and Doppler effects.Comment: One zipped file (Latex+eps figures). 33 pages, 14 figures. This and related material also at http://grwav3.roma1.infn.it

    Matched filter for multi-transducers resonant GW antennas

    Get PDF
    We analyze two kinds of matched filters for data output of a spherical resonant GW detector. In order to filter the data of a real sphere, a strategy is proposed, firstly using an omnidirectional in-line filter, which is supposed to select periodograms with excitations, secondly by performing a directional filter on such selected periodograms, finding the wave arrival time, direction and polarization. We point out that, as the analytical simplifications occurring in the ideal 6 transducers TIGA sphere do not hold for a real sphere, using a 5 transducers configuration could be a more convenient choice.Comment: 15 pages and 4 figures, version accepted for publication in PR

    Data analysis of gravitational-wave signals from spinning neutron stars. IV. An all-sky search

    Get PDF
    We develop a set of data analysis tools for a realistic all-sky search for continuous gravitational-wave signals. The methods that we present apply to data from both the resonant bar detectors that are currently in operation and the laser interferometric detectors that are in the final stages of construction and commissioning. We show that with our techniques we shall be able to perform an all-sky 2-day long coherent search of the narrow-band data from the resonant bar EXPLORER with no loss of signals with the dimensionless amplitude greater than 2.8×10−232.8\times10^{-23}.Comment: REVTeX, 26 pages, 1 figure, submitted to Phys. Rev.
    • 

    corecore